
PHPUnit and Drupal 8
No Unit Left Behind

 / Paul Mitchum @PaulMitchum

http://mile23.com/
http://twitter.com/PaulMitchum

And You Are?
Paul Mitchum

Mile23 on Drupal.org
From Seattle

Please Keep In Mind
The ability to give an hour-long presentation is not the same as

being an expert.

The Structure Of This Talk
What's A Unit Test?
Use The Tools
Who Eats Tests?
Writing A Test
Patterns For Isolation
Questions?
...until I run out of time

What's A Unit Test?
A test of a unit. Duh.

So What's A Unit?
A unit is:

Function / Method
Code path within a method
Line of code within a method

$this->assertTrue(
 SomeClass::thisMethodIsAUnit($data)
);

Why do we need unit tests?
Some concrete benefits:

1. They quickly tell us whether the code works.
2. They allow us to analyze the maintainability of our code.

Whither SimpleTest
SimpleTest has web-based functional tests. These test system

interactions rather than methods in code.

It's a different testing realm.

SimpleTest can stay. :-)

Tools
How to run PHPUnit tests.
How to generate PHPUnit coverage report.
How to read the coverage report.

How to run PHPUnit
(the right way)

1. At the command line...
2. cd core/
3. ./vendor/bin/phpunit
4. Wait 8 seconds.
5. Know the truth.

(demo)

How to run PHPUnit inside Drupal 8
(the wrong way)

1. Have XDebug.
2. Enable Testing module.
3. At the Drupal 8 testing page.
4. Find 'PHPUnit' group.
5. Click 'Run tests.'

How to run PHPUnit like the testbot
(the less wrong way)

1. With a working Drupal installation.
2. Enable the Testing module.
3. At the command line...
4. php core/scripts/run-tests.sh PHPunit
5. Wait a while.
6. Know the truth.

(demo)

The problem of coverage
Unicode::convertToUtf8()

(demo)

How to generate a coverage report
Make sure you have XDebug

Same as running the test...

./vendor/bin/phpunit --coverage-html [path]

Will generate static HTML site.

(crap-free demo)

What About SimpleTest?
SimpleTest coverage is not reflected in PHPUnit reports.

SimpleTests are functional, so they don’t have the same kind of
coverage as PHPUnit.

The problem of coverage
Missing files in Database

(demo)

Walk Through The Dashboard
(demo)

CRAP?
Yes, C.R.A.P.: Change Risk Anti-Pattern.

Measures maintainability of code.
Not a value judgement. :-)
Low number is better. 1 is minimum.
30 is generally considered high.

How does CRAP work?
Measures cyclomatic complexity of the method.
Measures line coverage.
Given coverage, importance of complexity is reduced.
Basically: High coverage kills CRAP.

The Lesson Of CRAP
Coverage means not having to worry.

The problem of maintainability
DisplayPluginBase::buildOptionsForm()

(demo)

Who Eats Tests?
or

I wrote a test, what can I do with it?
You have some knowledge of the tools, let's put them in context.

Continuous Integration
A process for testing all changes as they happen.

Make a change, quickly find out if it's bad.

As automatic as possible.

1. git commit
2. Push to repo
3. CI process triggered
4. Automatically deploy and run all the tests
5. Pass/fail report
6. Know
https://github.com/paul-m/drupal-travis-ci

https://github.com/paul-m/drupal-travis-ci

Drupal.org Testbot Process
Almost a CI process, but not quite. Still very useful.

1. Submit patch
2. Testbot applies patch
3. Testbot runs tests
4. Testbot shows status
5. Know (once you look at the issue again)

Not CI: You have to make the patch (and the interdiff), and it
doesn't automatically tell you the results.

Test-Along Methodology
Obsessively run tests while developing, because you can.

Keep a terminal window open.
Command-tab to terminal, hit up arrow and return.
Know.

A Modest Proposal For A Development Process
You're a developer. Your assignment: Fix a bug.

1. Generate a coverage report.
2. If coverage is low in your area of concern:
3. Write unit tests for high coverage baseline.
4. Begin fixing bug.
5. Run tests.
6. More bug fixing.
7. Run tests.
8. Etc.

PHPUnit/CI enables this process.

Essentially:

Your test will run every time anyone
submits a patch.

The test you write will be a metric used to measure the quality of
other code.

Your code and your test will be eaten by everyone else. Yum.

For-Reals PHPUnit Code Stuff

PHPUnit Definitions
Lots of overlap with SimpleTest

Assertion: Testing logic, pass/fail.
Test: A method that uses assertions.
Test case: A class with test methods.
Test suite: Which test cases to run. Config.

Drupal 8 PHPUnit Test Case
// file: [PSRpath]/FooTest.php
// namespace Drupal\Tests\Core\Whatever;
namespace Drupal\[module]\Tests;

// Drupal\Tests\UnitTestCase extends \PHPUnit_Framework_TestCase
use Drupal\Tests\UnitTestCase;

class FooTest extends UnitTestCase { // <- test case
 public function testFoo() { // <- test
 $this->assertTrue(TRUE); // <- assertion
 }
}

How Does PHPUnit Find Tests?
1. Ignore class autoloader.
2. Read config for directories to search.
3. Recursively search through directories.
4. Look for files ending in Test.php
5. include those files.
6. Check if they're subclasses of
\PHPUnit_Framework_TestCase

7. Check those classes have method names starting with test

core/
 lib/
 [PSR Namespace Here]
 tests/
 [PSR Namespace Here]
modules/
 someModule/
 someModule.info.yml
 lib/
 tests/
 [PSR Namespace...]
 Drupal/
 someModule/
 Tests/
 SomeModuleTest.php

File System

PSR-What?
BASICALLY...

PHP might need help finding a class.
You can use spl_autoload_register() to help it out.
Various PSR systems are strategies for finding the file.

YEAH, BUT HOW?

In Drupal PSR-0, namespace maps to file path.

Drupal\Core\Something\Else
becomes

[root dir]/Drupal/Core/Something/Else.php

[isolation]

Isolation
Enables us to test only the thing we're trying to test.

Decouples the test from other concerns.

Types of isolation:
System isolation: No database, no server
Language isolation: Pick out extensions and libraries
Code isolation: Let PHPUnit do the work

Patterns for Isolation
Data Providers
@expectedException
Test Doubles (mock, stub)
Dependency Injection
Interfaces

Pattern: Data Provider
A data provider is a method that returns an array of data which

PHPUnit then iterates into the test method’s parameters.
public function providerTestSomething() {
 return array(array(‘expected’, ‘data’),);
}

/**
 * Special annotation:
 * @dataProvider providerTestSomething
 */
public function testSomething($expected, $data) {
 $something = new Something();
 $this->assertEquals($expected, $something->testMe($data));
}

More on Data Providers
Once a unit test is written, it becomes: The Test™

You want its regression value to stay the same.

When you change the test, you are now testing something else.

Data providers give us a way to change test data without
changing test logic.

ALWAYS write a data provider, for any data-based test you
write. The test method should not depend on specific data.

Example without @expectedException annotation.

Anti-Pattern: Exceptions

/**
 * @dataProvider providerTestException
 */
public function testException($boom)
{
 try {
 $item = new \Some\Class();
 $item->badDataMakesMeGo($boom);
 }
 catch (\InvalidArgumentException $e) {
 $this->assertTrue(TRUE); // PASS
 return;
 }
 catch ($e) {
 }
 $this->assertTrue(FALSE); // FAIL
}

Pattern: Expected Exception
Test passes if an exception is thrown.

Isolates test from test code.
/**
 * @expectedException \InvalidArgumentException
 * @dataProvider providerTestException
 */
public function testException($boom) {
 $item = new \Some\Class();
 $item->badDataMakesMeGo($boom);
}

Pattern: Test Double
PHPUnit can provide an imposter object which you can program

to do stuff.

This is a ‘test double.’

Test doubles perform stubbing or mocking of items needed by
the system under test.

Isolate behavior of SUT from other implementations.

Test Double
We want to test this:

Class_A::wtfMethod(\Interface_B $b);

Let's make a test double:
public function testWtfMethod() {
 // Make a mock object.
 $mock = $this->getMock(‘\Interface_b’);

 // Tell it to handle the given method.
 $mock->expects($this->any())
 ->method(‘mockedMethod’)
 ->will($this->returnValue(‘iAmAnExpectedValue’));

 // And finally run the test.
 $this->assertTrue(Class_A::wtfMethod($mock));
}

Drupal 8 Built-In Test Doubles
Drupal\Tests\UnitTestCase has some test double

convenience methods.

Give them a look for clues about how to make test doubles.

getConfigFactoryStub()
getConfigStorageStub()
getBlockMockWithMachineName()
getStringTranslationStub()

Winding Up: Recap
PHPUnit: ./vendor/bin/phpunit
Coverage Report: --coverage-html [path]
CRAP: Reflects maintainability
Functional vs. Unit Testing: Systems vs. Code
Patterns: Isolation, Data providers, Test Doubles

Thank You!
Paul Mitchum

Mile23 on Drupal.org

@PaulMitchum on Twitter

paul-m on GitHub

http://mile23.com/phpunit-talk

http://mile23.com/phpunit-talk

Questions?
1. Good: I know the answer.
2. Excellent: I know the answer and have a slide.
3. Interesting: I have no clue what you are talking about.

