
PHPUnit and Drupal 8:
‘No Unit Left Behind’

Paul Mitchum
Mile23 on Drupal.org

paul-m on Github
from Seattle

G3T C0D3Z

Support page on my site:

http://mile23.com/phpunit-talk

Keep In Mind:

The ability to give an hour-
long presentation is not the
same as being an expert on

the subject.

Also: Please hold questions until afterwards.

Two Goals:

Give some practical knowledge in how to run
unit tests and interpret what they mean.

Even if you never write unit tests, you can run and
interpret them.

Introduce some concepts about testing in
general, and unit testing in particular.

To get you started writing tests.

I Assume That You Understand:

- Basic PHP OOP.
 Classes, Interfaces, Methods

- Basics of Composer, /vendor, etc.

- *nix flavored command line. No Windows.

Three Sections:
1. How to use the tools.
 - Run Drupal 8 PHPUnit tests.

 - Generate a PHPUnit coverage report.

 - Basics of interpreting coverage reports.

2. Which tests are which?
 - Definitions: Unit, Functional, Behavioral

 - Mainly differences between Functional and Unit testing.

 - SimpleTest vs. PHPUnit

3. Important unit testing concepts.
 - Isolation, DataProviders, Test doubles

What Do We Want?

To Know.
Stuff.
For Sure.

What Do We Want To Know?

That Our Code Works.
Development Process

Regression Testing
We want to know what we know.

That We Can Maintain The Code.
Refactoring
Coverage

Complexity
We want to know what we don’t know.

What’s a Unit?

Code-level

- Class Unit

- Method/Function Unit

- Individual Line of Code Unit

Tools
How To Run Stuff

Testing Under Drupal 8

Drupal 8 has two built-in testing systems:

- SimpleTest - Functional testing, from D7.

- PHPUnit - Unit testing.

PHPUnit under Drupal: Testing Page

PHPUnit under Drupal: Results Page

How To Run PHPUnit Tests (the right way)

0. At the command line...
1. Obtain Drupal 8.
2. cd to core/
3. ./vendor/bin/phpunit
4. Wait 8 seconds.
5. Know………………………………….(all/all)

(demo)

How To Run PHPUnit Tests: Fail

0. At the command line...
1. Obtain Drupal 8.
2. cd to core/
3. ./vendor/bin/phpunit
4. Wait 8 seconds.
5. Know………………………………….(all/all)

(demo)

Coverage Report
How do you know if you can trust the tests?

Coverage Things You Can Know:

 1) Coverage by line numbers.

 2) How the complexity of your code relates to
 its coverage. (aka C.R.A.P.: Change Risk
 Anti-Pattern)

How To Generate A Coverage Report

Same as running the test, except for two things:

Requires XDebug.

./vendor/bin/phpunit --coverage-html [path]

Will generate a static HTML site.

Or a minimal text report: --coverage-text

Where Is SimpleTest?

PHPUnit coverage reports do not reflect
SimpleTest coverage.

SimpleTest ‘coverage’ isn’t really line-based
anyway. They test different things. So it’s

apples and kumquats.

E-Z Ways To Interpret A Coverage
Report

Goals:
1) Quick Scary Info:

Dashboard.

2) Missing Coverage:
Compare Directory
w/ Coverage
Coverage report won’t reflect
classes untouched by tests.

Demo of coverage report

Coverage Report 1: Overview

Coverage Report 2: Single Class

CRAP: Change Risk Anti-Pattern

1

2

3

4

Recap

- Run tests in order to know things.

- Analyze coverage to know about tests.

- Line coverage is good.

- CRAP reveals maintainability risks.
 (Not a judgement of the code under test.)

Testing Categories

Unit - PHPUnit

Functional - SimpleTest

Behavioral - Behat

Behavioral Testing

Behat

Functional Testing (SimpleTest)
What Are You Testing?

How (sub)systems interact.

Does my module’s hook_schema() install a
table?

Does my module implement access control?
Is my form rendered properly?

Uses: SimpleTest tests, fixture database,
server

Unit Testing (PHPUnit)

What are you testing?

Subatomic teensy weensy nanoparticulate code.

Very few dependencies.
At the implementation level.

Do methods behave as expected?
What happens if I change code within a

method?

Restated

What problem domain do you care about?

Implementation: Unit tests.

Overall operation: Functional tests.

Project-Level Outcome: Behavioral tests.

Caveat: Very loose definitions.

Talk About Writing Unit Tests
Already!

PHPUnit Drupal 8
Rules of the Game

Generic Drupal 8 PHPUnit Test Case
// @file [PSR_path]/ModuleTest.php

namespace \Drupal\[module]\Tests;
// UnitTestCase extends \PHPUnit_Framework_TestCase

use Drupal\Tests\UnitTestCase;

class ModuleTest extends UnitTestCase {

 public function testSomething() {

 $this->assertTrue(TRUE);

 }

}

Drupal 8 PHPUnit File Setup
PSR-0 (4?) for both /lib and /tests

PHPUnit Concepts

Things to keep in mind if you are writing tests.

Isolation

Isolation
opposite of
Depenency

Concept: Isolation
Systems under test in unit tests should have as
few dependencies as possible.

As few moving parts as possible.

PHPUnit wants nothing and should remain
lean.

SimpleTest depends on the database and
server: Isolation PHAIL. (Which is OK.)

Concept: Isolation

Types of isolation:

- System isolation:
 No database, no server
- Language isolation:
 Pick out extensions and libraries
- Code isolation:
 Dataproviders, test doubles, reflection, hard.

U R DOING IT RONG!1!!
IF U R….

- Requiring a database

- Making a module

- Subclassing anything

- Writing complex support code

Isolation Anti-Patterns

Patterns For Isolation

- Data Providers

- @expectedException

- Test Doubles (mock, stub)

- Dependency Injection

- Interfaces In code under test.

Pattern: Data Providers
Data provider is a method that returns an array of data
which PHPUnit then iterates to the test method’s
parameters.

public function providerTestSomething() {

 return array(array(‘expected’, ‘data’),);

}

/**

 * @dataProvider providerTestSomething

 */

public function testSomething($expected, $data)

 { // Your Logic Here }

Pattern: DataProvider Isolation
Once a unit test is written, it becomes:
 The Test™

Test methods should not be altered.

Data providers give us a way to change test
data without changing test logic.

ALWAYS write a data provider, for any data-
based test you write. The test method should
not depend on specific data.
This is my sneaky way to teach you about dependency injection.

Anti-Pattern: Exception Handling
Example without @expectedException annotation.

/**

 * @dataProvider providerTestException

 */

public function testException($boom)

{

 try {

 $item = new \Some\Class();

 $item->badDataMakesMeGo($boom);

 }

 catch (\InvalidArgumentException $e) {

 $this->assertTrue(TRUE); // PASS

 return;

 }

 catch ($e) {

 }

 $this->assertTrue(FALSE); // FAIL

}

- Cumbersome

- 12 lines

- Not immediately clear

Pattern: ExpectedException

Test passes if an exception is thrown. Isolates
test from code.

/**

 * @expectedException \InvalidArgumentException

 * @dataProvider providerTestException

 */

public function testException($boom) {

 $item = new \Some\Class();

 $item->badDataMakesMeGo($boom);

}

Pattern: Test Doubles

PHPUnit can provide an imposter object which
you can program to do stuff.

This is a ‘test double.’

Test doubles perform stubbing or mocking of
items needed by the system under test.

Isolate behavior of SUT from other
implementations.

Pattern: Test Doubles

Class_A::
fooMethod(\Interface_B $b);

Under Test

$mock = $this->getMock
(‘\Interface_b’);

Pattern: Test Doubles

Class_A::fooMethod(\Interface_B $b);

 $mock = $this->getMock(‘\Interface_b’);
 $mock->expects($this->any())
 ->method(‘stubThisMethod’)
 ->will($this->returnValue(‘expected’));
 $this->assertEquals(

 ‘expected’,

 $a->fooMethod($mock)

);
Dependency Injection

of Mocked Object
(Modern PHP)

Winding Up: Recap

PHPUnit: ./vendor/bin/phpunit

Coverage Report: --coverage-html [path]

CRAP: Reflects maintainability

Functional vs. Unit Testing: Systems vs. Code

Patterns: Isolation, Data providers, Mocking

Thank you!

Paul Mitchum
Mile23 on Drupal.org
@PaulMitchum on Twitter
paul-m on GitHub

http://mile23.com/phpunit-talk

