PHPUnit and Drupal 8:
‘No Unit Left Behind’

Paul Mitchum
Mile23 on Drupal.org
paul-m on Github
from Seattle

G3T COD3Z

Support page on my site:

http://mile23.com/phpunit-talk

Keep In Mind:

The ability to give an hour-

long presentation is not the

same as being an expert on
the subject.

Also: Please hold questions until afterwards.

Two Goals:

Give some practical knowledge in how to run
unit tests and interpret what they mean.

Even if you never write unit tests, you can run and
interpret them.

Introduce some concepts about testing in
general, and unit testing in particular.
To get you started writing tests.

| Assume That You Understand:

- Basic PHP OOP.

Classes, Interfaces, Methods

- Basics of Composer, /vendor, etc.

- *nix flavored command line. No Windows.

Three Sections:

1. How to use the tools.

- Run Drupal 8 PHPUnit tests.
- Generate a PHPUnit coverage report.
- Basics of interpreting coverage reports.

2. Which tests are which?

- Definitions: Unit, Functional, Behavioral
- Mainly differences between Functional and Unit testing.
- SimpleTest vs. PHPUnit

3. Important unit testing concepts.

- Isolation, DataProviders, Test doubles

What Do We Want?

To Khow.
Stuff.

For Sure.

THEBRTILE=—

N ’ o
BLUE LASERS

What Do We Want To Know?
That Our Code Works.

Development Process
Regression Testing
We want to know what we know.

That We Can Maintain The Code.

Refactoring
Coverage
Complexity
We want to know what we don’t know.

What’s a Unit?

Code-level

- Class Unit

- Method/Function Unit

- Individual Line of Code Unit

Tools

How To Run Stuff

Testing Under Drupal 8

Drupal 8 has two built-in testing systems:
- SimpleTest - Functional testing, from D7.

- PHPUnit - Unit testing.

PHPUnit under Drupal: Testing Page

eTesting | localhost
&~ C' [localhost:8888/admin/config/development/testing @ =
ﬁ Home E Menu * Shortcuts j_ admin
B Content (v » Views

ch Structure V) » Views Config

4 A » Views Handlers
4, Appearance

ﬁc Extend
¥, Configuration (A

» Views module integration

» Views Plugins

» Views Ul
People v

» Views Wizard
System v

» XML-RPC
Content authoring v

» PHPUnit
User interface v

Run tests
Development e
CLEAN TEST ENVIRONMENT
Performance

Remove tables with the prefix "simpletest” and temporary directories that are left

. over from tests that crashed. This is intended for developers when creating tests.
Logging and errors

Clean environment

Maintenance mode

PHPUnit under Drupal: Results Page

Lyl
O OO / @ Testing | localhost X -

&« C | [localhost:8888/admin/config/development/testing I @B =

Home E Menu * Shortcuts 1 admin

Content authoring v
Revelopment

User interface v LIST SETTINGS

Development A

Performance € No test results to display.

Logging and errors Search

[

Maintenance mode

) v TESTS
Testing
e test(s) or te you would like to run, and click Run tests.
Configuration export TEST DESCRIPTION
Configuration import » Action
Synchronize » Aggregator

configuration

» AJAX
Media v

» Authentication
Search and metadata v

» Ban
Regional and language w

HOW TO Run PHPU"lt TeStS (the right way)

0. At the command line...

1. Obtain Drupal 8.

2. cd to core/

3. ./vendor/bin/phpunit

4. Wait 8 seconds.

. KNOW. .o (all/all)

(demo)

How To Run PHPUnit Tests: Fail

0. At the command line...
1. Obtain Drupal 8.

2. cd to core/

3. ./vendor/bin/phpunit
4. Wait 8 seconds.

5. KNOW........oooo (allall)

(demo)

Coverage Report

How do you Rnow if you can trust the tests?

Coverage Things You Can Know:
1) Coverage by line numbers.

2) How the complexity of your code relates to
its coverage. (aka C.R.A.P.: Change Risk
Anti-Pattern)

How To Generate A Coverage Report

Same as running the test, except for two things:

Requires XDebug.

./vendor/bin/phpunit --coverage-html [path]

Will generate a static HTML site.

Or a minimal text report: --coverage-text

Where Is SimpleTest?

PHPUnit coverage reports do not reflect
SimpleTest coverage.

SimpleTest ‘coverage’ isn't really line-based
anyway. They test different things. So it's
apples and kumquats.

E-Z Ways To Interpret A Coverage
Report

Goals: Top Project Risks

. i » DisplayPluginBase (183646)
1) Quick Scary Info: + ViewExecutable (59734
« FilterPluginBase (50400)

Dashboard. . FieldPluginBase (34149)

« ViewUl (21711)

Connection.php
’ ConnectionNotDefinedException.php
Database.php
* DatabaseException.php Code Coverage for /vagr

n u
[] DatabaseExceptionWrapper.php —
2) M I ss I n g C Ove I ag e ¢ DatabaseNotFoundException.php & c file://localhost/Users/paul /¢
[]

e 0o

Driver
DriverNotSpecifiedException.php vagrant / drupal / core / il
Install
IntegrityConstraintViolationException.p

Compare Directory &

Schema.php Total
’ SchemaException.php
’ SchemaObjectDoesNotExistException.p

¢ SchemaObjectExistsException.php B Connection.php
W Ove ra e | Statement.php B Log.php
¢ StatementEmpty.php

B StatementEmpty.php [

& Query

Statementinterface.php

StatementPrefetch.php i Statementinterface.php

) fl t €T tion.ph
Coverage report won't reflec Legend
’ TransactionException.php - 0% 9 ium: 35¢
TransactionExplicitCommitNotAllowedEX RISl ENedium:'353

classes untouched by tests. ¢ TransactonNameNonniquebxcepof

TransactionNoActiveException.php
TransactionQutOfOrderFxcention.nhn
i

drupal » [Core » [] Database

Demo of coverage report

[

Coverage Report 1: Overview

[1] Code Coverage for /vagr:

vagrant / drupal

Total

@ Access

& Action

= Ajax

& Asset

& Batch

& Cache

= Config

= Controller

@ Database

@ Dependencylnjection
& Entity

= EventSubscriber

& Executable

X

core / lib / Drupal / Core (Dashboard)

Lines
— 31.25%
B 9245%
- 25.00%
- 19.12%
B 100.00%
G 100.00%
— 71.84%
" 8.40%
- 19.57%
| 1.55%
B 9565%
| 9.95%
G 58

1385 / 4432
98 /106
3/12

13 /68

99 /99
8/8
176 / 245
42 /500
18 /92
4/258
22/23
106 / 1065
29/33

Code Coverage

C' [file://localhost/Users/paul/pj2/coverage-watchme /vagrant_drupal_core_lib_Drupal_Core.html

Functions and Methods

[26.83%
—— 70.59%
[| 16.67%
[33.33%
B 100.00%
G 100.00%
— 50.82%
| 9.41%
- 20.00%
| 5.48%
— 80.00%
| 8.51%
— 60.00%

202 /753
12/17
1/6
2/6
9/9
1/1
31/61
8/85
4/20
4/73
4/5
16/188
3/5

Classes and Traits

[OO—

24.71% 21/85
66.67% 2/3

0.00% 0/2
33.33% 1/3

G 0000% 3/3
G 100.00% 1/1

25.00% 1/4

0.00% 0/6
0.00% 0/2
0.00% 0/3
66.67% 2/3
833% 1/12
0.00% 0/2

Coverage Report 2: Single Class

[Code Coverage for fvagra x

€ C' [file://localhost/Users/paul/pj2/coverage-watchme/vagrant_drupal_core_lib_Drupal_Core_Access_AccessManager.php.html

vagrant / drupal / core / lib / Drupal / Core / Access / AccessManager.php

Code Coverage

Classes and Traits Functions and Methods
Total 0.00% 0/ |\ 54.55% 6/11
AccessManager 0.00% O0/1 | 54.55% 6/ 11
__construct(RouteProviderinterface $route_provider, _ 100.00% 1/1
UriGeneratorinterface $url_generator,
ParamConverterManager $paramconverter_manager)
setRequest(Request $request) _ 100.00% 1/1
addCheckService($service_id) G 100.00% 1/1
setChecks(RouteCollection $routes) _ 100.00% 1/1
applies(Route $route) _ 100.00% 1/1
checkNamedRoute($route_name, array $parameters = 0.00% 0/1
array()
check(Route $route, Request Srequest) B 0000% 1/1
checkAll(array $checks, Route $route, Request 0.00% 0/1

Srequest)

~ mnne

CRAP
37.87

Lines
91.40%
91.40%

100.00%

100.00%
100.00%
100.00%
100.00%

84.62%

100.00%
84.62%

85/893
85/93
4/4

2/2
2/2
7/7
14/14
11/13

5/5
11/13

CRAP: Change Risk Anti-Pattern

&

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

C

| /) Code Coverage for /vagra=

' file://localhost/Users/paul/pj2/coverage-watchme/vagrant_drupal_core_lib_Drupal... 57 &

*

* @param string $data

* The data to be converted.

* @param string $encoding

* The encoding that the data is in.

* @return string|bool
* Converted data or FALSE.
*/

public static function convertToUtf8($data, S$encoding) {

if (function exists('iconv')) {

return €iconv($encoding, 'utf-8', $data);

}

elseif (function exists('mb_convert encoding')) {

return €mb_convert encoding($data,

}

‘utf-8', S$encoding);

elseif (function exists('recode string')) {

return @recode string($encoding .

}

// Cannot convert.
return FALSE;

[x*

'..utf-8', $data);

Recap

- Run tests in order to know things.

- Analyze coverage to know about tests.

- Line coverage is good.

- CRAP reveals maintainability risks.
(Not a judgement of the code under test.)

Testing Categories

Unit - PHPUnNit
Functional - SimpleTest

Behavioral - Behat

Behavioral Testing

Behat

Functional Testing (SimpleTest)
What Are You Testing?

How (sub)systems interact.

Does my module’s hook schema() install a
table?

Does my module implement access control?
Is my form rendered properly?

Uses: SimpleTest tests, fixture database,
server

Unit Testing (PHPUnit)

What are you testing?

S u 6 d tomic Lee nsy weensy nanoparticulate COd‘ e.

Very few dependencies.
At the implementation level.
Do methods behave as expected?

What happens if | change code within a
method?

Restated

What problem domain do you care about?
Implementation: Unit tests.

Overall operation: Functional tests.
Project-Level Outcome: Behavioral tests.

Caveat: Very loose definitions.

Talk About Writing Unit Tests
Already!

O.

&
S

*

PHPUnit

PHPUnit Drupal 8
Rules of the Game

Generic Drupal 8 PHPUnit Test Case

// @file [PSR_path]/ModuleTest.php

namespace \Drupal\[module]\Tests;
// UnitTestCase extends \PHPUnit Framework TestCase

use Drupal\Tests\UnitTestCase;

class ModuleTest extends UnitTestCase {
public function testSomething() ({
$this->assertTrue(TRUE);

Drupal 8 PHPUnit File Setup
PSR-0 (47?) for both /lib and /tests

v || core
v |l lib
» || Drupal
v || tests
» || Drugal
¥ || modules
v || someModule
> wl lib
¥ || tests
v || Drupal
v || someModule
v || Tests

-

& ModuleTest.php

PHPUnit Concepts

Things to keep in mind if you are writing tests.

Isolation

Isolation
opposite of
Depenency

Concept: Isolation

Systems under test in unit tests should have as
few dependencies as possible.

As few moving parts as possible.

PHPUnIt wants nothing and should remain
lean.

SimpleTest depends on the database and
server: Isolation PHAIL. (Which is OK.)

Concept: Isolation

Types of isolation:

- System isolation:
No database, no server
- Language isolation:
Pick out extensions and libraries
- Code isolation:
Dataproviders, test doubles, reflection, hard.

U R DOING IT RONG!1!!
IF UR....

- Requiring a database
- Making a module
- Subclassing anything

- Writing complex support code

Isolation Anti-Patterns

Patterns For Isolation

- Data Providers
- @expectedException
- Test Doubles (mock, stub)

- Dependency Injection

T

Interfaces < Q)de underD

Pattern: Data Providers

Data provider is a method that returns an array of data
which PHPUNnit then iterates to the test method’s
parameters.

public function () {
return array(array(‘expected’, ‘data’),);

}
/**

* @dataProvider
*/
public function testSomething($expected, $data)
{ // Your Logic Here }

Pattern: DataProvider Isolation

Once a unit test is written, it becomes:
The Test™

Test methods should not be altered.

Data providers give us a way to change test
data without changing test logic.

ALWAYS write a data provider, for any data-
based test you write. The test method should
not depend on specific data.

This is my sneaky way to teach you about dependency injection.

Anti-Pattern: Exception Handling

Example without @expectedException annotation.

/¥
* @dataProvider providerTestException - Cumbersome
*/
public function testException($boom)
{ - 12 lines
try {
$item = new \Some\Class(); i i
$item->badDataMakesMeGo($boom); = Pd()t IfT]fT]EB(jIEit€3|)/ (:lEEEir
}

catch (\InvalidArgumentException $e) {
$this->assertTrue(TRUE); // PASS
return;

}
catch (%$e) {

}
$this->assertTrue(FALSE); // FAIL

Pattern: ExpectedException

Test passes if an exception is thrown. Isolates
test from code.

/**
v \InvalidArgumentException
* @dataProvider providerTestException
*/

public function testException($boom) {

$item = new \Some\Class();

$item->badDataMakesMeGo($boom) ;
}

Pattern: Test Doubles

PHPUnit can provide an imposter object which
you can program to do stuff.

This Is a ‘test double.’

Test doubles perform stubbing or mocking of
items needed by the system under test.

|solate behavior of SUT from other
Implementations.

Pattern: Test Doubles
Under Test

\

Class A::
fooMethod(\Interface B $b);

$mock = $this->getMock

(‘\Interface b’);

Pattern: Test Doubles

Class_A::fooMethod(\Interface_B $b);

$mock = $this->getMock(‘\Interface b’);
$mock->expects($this->any())
->method(‘stubThisMethod’)
->will($this->returnValue(‘expected’));
$this->assertEquals(

‘expected’,
$a->fooMethod($mock)

)5

Dependency Injection
of Mocked Object
(Modern PHP)

Winding Up: Recap
PHPUnIit: . /vendor/bin/phpunit
Coverage Report: --coverage-html [path]
CRAP: Reflects maintainability

Functional vs. Unit Testing: Systems vs. Code

Patterns: Isolation, Data providers, Mocking

Thank you!

Paul Mitchum

Mile23 on Drupal.org
@PaulMitchum on Twitter
paul-m on GitHub

http://mile23.com/phpunit-talk

